Home Releases 2023 №4 (38)

MATHEMATICAL MODELLING OF FLEXIBLE PLANNING FOR THE CONSTRUCTION OF COMPLEX ENGINEERING FACILITIES BASED ON THE MATRIX METHOD

Domestic and Foreign Experience of Management , UDC: 338.984 DOI: 10.25688/2312-6647.2023.38.4.07

Authors

  • Leontiev Nikolay Yakovlevich Doctor of Economics
  • Samarov Dmitry Andreevich
  • Nikonova Irina Olegovna
  • Tyulenev Roman Antonovich

Annotation

Flexible and hybrid approaches to project management are widely represented in IT and construction. But many manufacturing continue to use the traditional approach to project management. The article presents a flexible planning method for constructing a dependency structure of tasks in the project. This method allows you to model, visualize and analyze dependencies between project tasks. A key feature of mathematical modeling is the ability to optimize the planning schedule for the design an object by choosing technological task alternatives. The article gives a general assessment of the possible economic effect of the implementation of the model in a real project. Also it shows the prospects for the development of this method. The purpose of the work is to consider the possibility of using the matrix method for flexible planning of the construction of complex engineering facilities, analysis of the structure of project dependencies and its optimization. The result of the work is a prototype of a software tool that implements flexible project planning. It is based on the matrix method and takes into account the multi-scenario implementation of some tasks. The model is able to prioritize between the ways of solving the work/task, as well as the sequence of their implementation when planning a project. The expansion of functionality, the introduction of optimization based on resource profiles can serve as a further stage of research. The end result of the work will be software with a user-friendly interface based on this mathematical model.

How to link insert

Leontiev, N. Y., Samarov, D. A., Nikonova, I. O. & Tyulenev, R. A. (2023). MATHEMATICAL MODELLING OF FLEXIBLE PLANNING FOR THE CONSTRUCTION OF COMPLEX ENGINEERING FACILITIES BASED ON THE MATRIX METHOD Bulletin of the Moscow City Pedagogical University. Series "Pedagogy and Psychology", 2023 №4 (38), 74. https://doi.org/10.25688/2312-6647.2023.38.4.07
References
1. 1. Asaul A. N., Knyaz I. P., Korotaeva Yu. V. Theory and practice of decision-making on organizations’ way out of crisis / ed. by A. N. Asaul. St. Petersburg: Institute of Problems of Economic Revival, 2007 224 р.
2. 2. Dudnikov A. V. Analysis of the current state of the level of project management in the organization [Electronic resourse] // Modern management technologies. 2021. № 3 (96). URL: https://sovman.ru/article/9614/
3. 3. Wysocki R. K. Effective project management: Traditional, agile, extreme, hybrid. John Wiley & Sons, 2019. 656 p.
4. 4. Zsolt T., Gergely, L. N., Csaba H. Survive IT! Survival analysis of IT project planning approaches [Electronic resourse] // Operations Research Perspectives. 2020. Vol. 7. URL: https://www.researchgate.net/publication/346872557_Survive_IT_Survival_analysis_of_IT_project_planning_approaches
5. 5. Steward D. The Design Structure System: A Method for Managing the Design of Complex Systems // IEEE Transactions on Engineering Management. 1981. № 28 (3). Р. 71–74.
6. 6. Kosztyán Z. T., Szalkai I. Multimode resource-constrained project scheduling in flexibleprojects // J Global Optim. 2020. № 76 (1). Р. 211–41.
7. 7. Zsolt T. MFPP: Matrix-based flexible project planning, scheduling, and risk analysis for traditional, agile, and hybrid project management [Electronic resourse] // SoftwareX. 2022. № 17. URL: https://www.softxjournal.com/article/S2352-7110(22) 00001-2/pdf
8. 8. Wen F., Edward F., Crawley O., de Weck L., Robinson B. Dependency structure matrix modelling for stakeholder value networks [Electronic resourse] // Managing Complexity by Modelling Dependencies: Proceedings of the 12-th International DSM Conference. Cambridge, UK, 2010. URL: https://www.designsociety.org/publication/30353/Dependency+Structure+Matrix+Modelling+for+Stakeholder+ValueNetworks
9. 9. McAvoy J., Butler T. A failure to learn in a software development team: the unsuccessful introduction of an agile method // Information systems development. Springer, 2009. Р. 1–13.
10. 10. Conforto E. C., Salum F., Amaral D. C., Da Silva S. L., De Almeida L. F. M. Can agile project management be adopted by industries other than software development? // Proj Manag J. 2014. № 45 (3). Р. 21–34.
11. 11. Kolisch R. Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation // European J Oper Res. 1996. № 90 (2). Р. 320–33.
12. 12. Vanhoucke M. Measuring the efficiency of project control using fictitious and empirical project data // Int J Proj Manag. 2012. № 30 (2). Р. 252–63.
13. 13. Brucker P., Drexl A., Mohring R., Neumann K., Pesch E. Resource-constrained project scheduling: Notation, classification, models, and methods // Eur J Oper Res. 1999. № 112 (1). Р. 3–41.
14. 14. Franco-Duran D. M., Garza J. M. Review of resource-constrained scheduling algorithms [Electronic resourse] // J Constr Eng Manag. 2019. № 145 (11). URL: https://scholar.google.com/citations?user=YmSChwYAAAAJ&hl=en
15. 15. Kosztyán Z. T., Szalkai I. Hybrid time-quality-cost trade-off problems [Electronic resourse] // Oper Res Perspect. 2018. № 5. Р. 1–36. URL: http://real.mtak.hu/86160/1/2-hybrid-time-quality.pdf
16. 16. Steven D., Eppinger, Tyson R. Design Structure Matrix, Methods and Applications Browning MIT Press. Cambridge, 2012. 352 р.
17. 17. Orlov A. I. A new approach to the study of the stability of conclusions in mathematical models // Scientific Journal of KubGAU. 2014. № 100. Р. 1–30.
18. 18. Kataev A. V., Kataeva T. M., Makarova E. L. Project management: mathematical models of optimal assignment of project work performers [Electronic resourse] // Izvestiya Saratov University. A new series. Economics series. Management. Right. 2016. Vol. 16, issue 3. URL: https://cyberleninka.ru/article/n/upravlenie-proektami-matematicheskiemodeli-optimalnogo-naznacheniya-ispolniteley-proektnyh-rabot
19. 19. Sorokin L. V., Baranova N. M. Application of the MATLAB system for the development of mathematical thinking methods among students of economic specialties [Electronic resourse] // International Research Journal. 2015. № 11 (42). URL: https://cyberleninka.ru/article/n/primenenie-sistemy-matlab-dlya-razvitiya-metodov-matematicheskogomyshleniya-u-studentov-ekonomicheskih-spetsialnostey
20. 20. Servranckxa T., Vanhoucke M. Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules // European Journal of Operational Research. 2019. Vol. 279, issue 1, 16 November. P. 38–53.
Download file .pdf 586.79 kb